
On the initial value problem of a periodic box-ball system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 L617

(http://iopscience.iop.org/0305-4470/39/43/L01)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) L617–L623 doi:10.1088/0305-4470/39/43/L01

LETTER TO THE EDITOR

On the initial value problem of a periodic box-ball
system

Jun Mada1, Makoto Idzumi2 and Tetsuji Tokihiro1

1 Graduate school of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Tokyo 153-8914, Japan
2 Department of Mathematics, Faculty of Education, Shimane University,
Matsue 690-8504, Japan

Received 16 August 2006, in final form 13 September 2006
Published 11 October 2006
Online at stacks.iop.org/JPhysA/39/L617

Abstract
We show that the initial value problem of a periodic box-ball system can be
solved in an elementary way using simple combinatorial methods.

PACS numbers: 04.20.Ex, 02.30.Ik, 05.45.Yv

A periodic box-ball system (PBBS) is a dynamical system of balls in an array of boxes with
a periodic boundary condition [1, 2]. The PBBS is obtained from the discrete KdV equation
and the discrete Toda equation, both of which are known as typical integrable nonlinear
discrete equations, through a limiting procedure called ultradiscretization [3, 4]. Since the
ultradiscretization preserves the main properties of the original discrete equations, and the
solvability of the initial value problem being an important property of integrable equations,
we expect that the initial value problem of the PBBS can also be solved. In fact, the initial
value problem for the PBBS was first solved by inverse ultradiscretization combined with the
method of inverse scattering transform of the discrete Toda equation [5] and recently by the
Bethe ansatz for an integrable lattice model with quantum group symmetry at the deformation
parameter q = 0 and q = 1 [6]. These two methods, however, require fairly specialized
mathematical knowledge on algebraic curves or representation theory of quantum algebras.

An important property which characterizes a state of the PBBS is the fundamental cycle
of the state, i.e., the length of the trajectory to which it belongs. Its explicit formula as well
as statistical distribution was obtained and its relation to the celebrated Riemann hypothesis
was clarified [7–9]. To prove the formula for the fundamental cycle, one of the key steps
is to compare a state with its ‘reduced states’ constructed by the ‘10-elimination’. In this
letter, we show that the initial value problem of the PBBS is solved by simple combinatorial
arguments—essentially given in [7]—with some remarkable features of the reduced states.

First we quickly review the definition of the PBBS and its conserved quantities. Consider
a one-dimensional array of boxes each with a capacity of one ball. A periodic boundary
condition is imposed by assuming that the last box is adjacent to the first one. Let the number
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Figure 1. Arc lines and conserved quantities for the state (�).

of boxes be N and that of balls be M. We assume M < N/2. An arrangement of M balls in N
boxes is called a state of the PBBS. Denoting a vacant box by 0 and a filled box by 1, a state
of the PBBS is represented by a 0, 1 sequence of length N. The time evolution rule from time
step t to t + 1 can be described as follows.

• For a given state, connect all 10 pairs in the sequence with arc lines. We call them ‘1∩ arc
lines’.

• Neglecting the 10 pairs which are connected in the first step, connect all the remaining
10s with arc lines. We call them ‘2∩ arc lines’.

• Repeat the above procedure until all 1s are connected to 0s with arc lines.
• Exchange all the 1s and 0s which are connected with arc lines. Then we obtain a new

sequence which we call the state evolved by one time step.

If we denote by pj (t) the number of j∩ arc lines, we obtain a nonincreasing sequence of
positive integers, pj (t) (j = 1, 2, . . . , m). Then, this sequence is conserved in time, that is,

pj (t) = pj (t + 1) ≡ pj (j = 1, 2, . . . , m).

As the sequence (p1, p2, . . . , pm) is nonincreasing, we can associate a Young diagram with
it by regarding pj as the number of squares in the j th column of the diagram. The lengths
of the rows are also weakly decreasing positive integers. Let the distinct row lengths be
L1 > L2 > · · · > Ls and let nj be the number of times that the length Lj appears. The set
{Lj , nj }sj=1 is another expression for the conserved quantities of the PBBS.

For example, for a state of the PBBS with N = 32,M = 14

(�) 00111011100100011110001101000000,

the arc lines are drawn as in figure 1 and its conserved quantities are expressed by the Young
diagram given in figure 2.

To solve the initial value problem of the PBBS, we utilize the fact that a state of the
PBBS is determined by its conserved quantities and the positions of 10 pairs to which the
‘10-elimination’ is applied. In the present context, a 10-elimination is to convert a state to
a state with smaller number of entries by eliminating all 10 pairs in the sequence connected
with 1∩ arc lines. Let us consider a state S with conserved quantities (p1, p2, . . . , pm) or
equivalently {Lj , nj }sj=1. Note that s � m and L1 = m. We define its k-reduced state
(k = 1, 2, . . . , m) as that obtained from the state by eliminating all the 10 pairs connected
with j∩ arc lines for all j : 1 � j � k. The length of the k-reduced state is N − 2

∑k
j=1 pj .

We sometimes refer to the original state S as the 0-reduced state. Clearly, 10-elimination is
not a reversible operation. If, however, we remember the places where 10 pairs have been
eliminated, we can recover the original state, at least up to shift, by inserting 10 pairs there.
Since there has necessarily been a 10 pair between consecutive 1 and 0 in the reduced state, we
have only to remember the places for the other 10 pairs. (Such places are called the positions
of 0-solitons in [7], and we use the same terminology here.) To specify the positions for
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Figure 2. Young diagram corresponding to the conserved quantities of (�).

insertion of 10 pairs, we number a place between j and (j + 1)th consecutive entries in a state
by integer j . Note that, due to the periodic boundary condition, we set 0 ≡ N − 2

∑k
j=1 pj

for the k-reduced state. Hereafter we explicitly write the j th place by ‘
j

|’ in the 0, 1 sequence.
For example, the state (�) is expressed as

0
|0

1
|0

2
|1

3
|1

4
|1

5
|0

6
|1

7
|1

8
|1

9
|0

10
|0

11
|1

12
|0

13
|0

14
|0

15
|1

16
|1

17
|1

18
|1

19
|0

20
|0

21
|0

22
|1

23
|1

24
|0

25
|1

26
|0

27
|0

28
|0

29
|0

30
|0

31
|0

32
| .

If we denote by Ê a 10-elimination, for the above state (�), the k-reduced state is expressed
as Êk(�) and we have

Ê(�) =
0
|0

1
|0

2
|1

3
|1

4
|1

5
|1

6
|0

7
|0

8
|0

9
|1

10
|1

11
|1

12
|0

13
|0

14
|1

15
|0

16
|0

17
|0

18
|0

19
|0

20
| ,

Ê2(�) =
0
|0

1
|0

2
|1

3
|1

4
|1

5
|0

6
|0

7
|1

8
|1

9
|0

10
|0

11
|0

12
|0

13
|0

14
| ,

Ê3(�) =
0
|0

1
|0

2
|1

3
|1

4
|0

5
|1

6
|0

7
|0

8
|0

9
|0

10
| ,

Ê4(�) =
0
|0

1
|0

2
|1

3
|0

4
|0

5
|0

6
|,

Ê5(�) =
0
|0

1
|0

2
|0

3
|0

4
| .

In Ê(�) the positions of 0-soliton are 4, 7 and 15, in Ê2(�) the position of 0-soliton is 10, in
Ê3(�) there are no 0-solitons, and so on. Note that there is indeterminacy in constructing the
original state from the reduced sequence; for example, both 0110001 and 1100010 turn out
to be the same reduced state with the same positions of 0-solitons by 10-elimination. Hence
we cannot necessarily determine the exact position of the 10 pair in the original state from the
position of the corresponding 0-solitons in the reduced state.

In the k-reduced states, Êk(S), the number of positions of 0-solitons is pk−pk+1 (pm+1 :=
0). Hence there appear

∑s
j=1 nj = p1 0-solitons in total in the reduced states. We also find

that 0-solitons appear only at the Lj -reduced states ÊLj (S) (j = 1, 2, . . . , s) and that the
number of 0-solitons is nj in ÊLj (S). There is no 0-soliton in the other reduced states. So
we denote by x

(k)
j (k = 1, 2, . . . , nj ) the position of the kth 0-soliton in the Lj -reduced state.

Since ÊL1(S) only consists of N − 2M 0s, we can reconstruct the original state up to some
shift from

{
x

(j)

k

}s,

j=1,

nj

k=1. If, however, we know the original position in the 0-reduced state of
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one of the 0-solitons in the L1-reduced state, we can recover the original state, because we
have only to shift the state obtained by successive insertion of 10 pairs so that it coincides with
the original position.

For this purpose, it is more convenient to introduce a set of variables
{
α

(j)

k

}s,

j=1,

nj

k=1 and
Xs+1. First we define the reference positions Xj(j = 1, 2, . . . , s + 1) which is defined from
x

(1)
1 recursively as follows.

• X̃L1 = x
(1)
1 .

• We denote by X̃L1−1 the position in between 1 and 0 in the (L1 − 1)-reduced state of the
10 pair which turns into the 0-soliton at X̃L1 in the L1-reduced state.

• Similarly we denote by X̃L1−2 the position in between 1 and 0 in the (L1 − 2)-reduced
state of the 10 pair which turns into the position X̃L1−1 in the (L1 − 1)-reduced state. If
there are more than one 10 pairs inserted at the position, X̃L1−2 is the left most position
among them.

• Repeat the above procedure and obtain X̃k(k = 0, 1, . . . , L1).
• Xj := X̃Lj

(j = 1, 2, . . . , s + 1, where Ls+1 := 0).

In the above example (�), X̃L1 = X̃5 = 2, X̃4 = 3, X̃3 = 4, X̃2 = 5, X̃1 = 6 and X̃0 = 9.
Hence X1 = 2, X2 = 3, X3 = 5, X4 = 6 and X5 = 9. In the terminology of [7], Xj is the
position of one of the ‘largest solitons’ in the Lj -reduced state which turns to a 0-soliton in the
L1-reduced state. Hence Xs+1 is ‘the original position in the 0-reduced state’ of the 0-soliton
at the position x

(1)
1 .

Then we define α
(j)

k

(
1 � α

(j)

k � Nj

)
by

α
(j)

k = Xj − x
(j)

k mod Nj (j = 1, 2, . . . , s, k = 1, 2, . . . , nj ), (1)

where

Nj := N − 2M +
j∑

i=1

2ni(Li − Lj) (j = 1, 2, . . . , s)

is the number of entries in the Lj -reduced state. Note that α
(1)
1 = N1 and α

(j)

k is the distance of
the kth 0-soliton from the position of the ‘largest soliton’ in the Lj -reduced state, which turns
out to be a 0-soliton in the L1-reduced state. Since the state S can be determined up to shift
by inserting 10 pairs at the positions of 0-solitons and that between consecutive 1 and 0, and
Xs+1 determines the amount of the shift, the state S is uniquely determined by the variables{
α

(j)

k

}s,

j=1,

nj

k=1+δ1,j
and Xs+1. Formally we may write that{

α
(j)

k

}nj

k=1 ∈ Snj
(
ZNj

)
:= ZNj

× ZNj
× · · · × ZNj︸ ︷︷ ︸
nj

/
Snj (j = 2, 3, . . . , s),

where ZNj
is the cyclic group of order Nj, S

nj is the symmetric group of order nj and, since
there are N1 + 1 distinct positions3 for (n1 − 1) 0-solitons in the L1-reduced state,{

α
(1)
k

}n1

k=2 ∈ Sn1−1
(
ZN1+1

)
,

and Xs+1 ∈ ZN . If we define

ṼY := Sn1−1
(
ZN1+1

) × Sn2
(
ZN2

) × · · · × Sns
(
ZNs

) × ZN,

then an element of ṼY naturally corresponds to a state of the PBBS. Since there are n1 choices
of the reference position, there are exactly n1 elements in ṼY which correspond to a state of

3 When another 0-soliton is located at position X1, it is either at the left of the reference 0-soliton or to the right of it.
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the PBBS. We regard two elements of ṼY as equivalent if and only if they corresponds to the
same state of the PBBS. Denoting by VY the quotient set of ṼY according to this equivalence
relation, we obtain the following theorem.

Theorem 1. Denote by �Y a set of the states of the PBBS of M balls and N boxes with
conserved quantities {Lj , nj }sj=1 characterized by the Young diagram Y. Then there is a
one to one correspondence between the sets �Y and VY . The explicit bijection is given
by the 10-eliminations and its inverse operations with shift using the variables Xs+1 and{
α

(j)

k

}s,

j=1,

nj

k=1+δ1,j
.

As for the explicit construction of a state of the PBBS from an element in VY , see the example
given below.

Now we consider the initial value problem of the PBBS. Let S(t) be the state evolved
from the state S by t time steps. From theorem 1, we have that the dynamics of the
PBBS can be described by an element in VY . Hence, to determine a state S(t), it is
enough to obtain the variables

({
α

(j)

k (t)
}s,

j=1,

nj

k=1+δ1,j
, Xs+1(t)

) ∈ VY from the initial values({
α

(j)

k (0)
}s,

j=1,

nj

k=1+δ1,j
, Xs+1(0)

) ∈ VY . However, the time dependence of these variables has
already been given in [7]:

Proposition 1 ([7] theorem 3.1, lemmas 4.2 and 4.3). For i = 1, 2, . . . , s + 1, let γi(t) be
γ1(t) := 0, γ2(t) := (L1 − L2)t and

γi(t) := (L1 − Li)t + 2
i−1∑
j=2

(Lj − Li)

nj∑
k=1

β
(j)

k (t)

for i = 3, 4, . . . , s + 1, where

β
(j)

k (t) :=
⌊

γj (t) + α
(j)

k (0) − 1

Nj

⌋
(j = 2, 3, . . . , s, k = 1, 2, . . . , nj ).

Then it holds that

α
(j)

k (t) = α
(j)

k (0) + γj (t) mod Nj .

and

Xs+1(t) = Xs+1(0) + γs+1(t) mod N.

Remark 1. Note that both γi(t) and α
(j)

k (t) are determined recursively. As we shall see, in
practice we have only to use the relation

α
(j)

k (0) + γj (t) = Njβ
(j)

k (t) + α
(j)

k (t).

In conclusion, we have solved the initial value problem of the PBBS which may be stated
as follows.

Theorem 2. The initial value problem of the PBBS is solved in the space of VY . Its dynamics
is explicitly given in proposition 1.

In the rest of this letter, we explain how to obtain the time evolution of a state of the PBBS
by means of an example. Suppose that we have the state (�) which we have used previously

(�) 00111011100100011110001101000000
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at time step t = 0. From figure 2 and Êk(�), we find s = 4, N1 = 4, N2 = 6, N3 = 14, N4 =
20. Then referring to the reduced sequences Êk(�), we obtain

x
(1)
1 (0) = 2, x

(2)
1 (0) = 3, x

(3)
1 (0) = 10,

x
(4)
1 (0) = 4, x

(4)
2 (0) = 7, x

(4)
3 (0) = 15.

The reference positions Xj(0) (j = 1, 2, . . . , 5) are found to be

X1(0) = 2, X2(0) = 3, X3(0) = 5, X4(0) = 6, X5(0) = 9.

Hence α
(j)

k (0) are given as

α
(1)
1 (0) = 4, α

(2)
1 (0) = 6, α

(3)
1 (0) = 9,

α
(4)
1 (0) = 2, α

(4)
2 (0) = 19, α

(4)
3 (0) = 11.

Now let us consider the state at t = 10 000. According to proposition 1, α
(j)

k (t) and γi(t) are
calculated recursively as follows:

(1) N2 = 6,

γ2(t) = (L1 − L2)t = 10 000

⇒ α
(2)
1 (0) + γ2(t) = 6 + 10 000 = 1667 · 6 + 4

⇒ α
(2)
1 (t) = 4,

(2) N3 = 14,

γ3(t) = (L1 − L3) · t + 2(L2 − L3) · 1667 = 36 668

⇒ α
(3)
1 (0) + γ3(t) = 9 + 36 668 = 2619 · 14 + 11

⇒ α
(3)
1 (t) = 11,

(3) N4 = 20,

γ4(t) = (L1 − L4) · t + 2(L2 − L4) · 1667 + 2(L3 − L4) · 2619 = 55 240

⇒




α
(4)
1 (0) + γ4(t) = 2 + 55 240 = 2762 · 20 + 2

α
(4)
2 (0) + γ4(t) = 19 + 55 240 = 2762 · 20 + 19

α
(4)
3 (0) + γ4(t) = 11 + 55 240 = 2762 · 20 + 11

⇒




α
(4)
1 (t) = 2,

α
(4)
2 (t) = 19,

α
(4)
3 (t) = 11;

(4) N = 32,

γ5(t) = (L1 − L5) · t + 2(L2 − L5) · 1667 + 2(L3 − L5) · 2619

+ 2(L4 − L5) · (2762 + 2762 + 2762) = 90 384

⇒ X5(t) = X5(0) + γ5(t) mod N = 9 + 90 384 mod 32

= 25.

From these data, the state at t = 10 000 is constructed up to shift by inserting 10 pairs as

0
|0

1
|0

2
|0

3o

|0
4
|,

−→
0o

|0
1
|0

2
|0

3
|1

4∗

|0
5
|0

6
|,

−→
0
|1

1
|0

2
|0

3
|0

4
|0

5
|1

6
|1

7∗

|0
8
|0

9
|0

10
| ,
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−→
0
|1

1
|1

2
|0

3
|0

4
|0

5
|0

6
|0

7
|1

8
|1

9
|1

10∗

|0
11
|0

12
|0

13o

| 0
14
| ,

−→
0
|1

1
|1

2o

|1
3
|0

4
|0

5
|0

6
|0

7
|0

8
|0

9
|1

10
|1

11o

|1
12
|1

13∗

|0
14o

|0
15
|0

16
|0

17
|1

18
|0

19
|0

20
| ,

−→
0
|1

1
|1

2
|1

3
|0

4
|1

5
|1

6
|0

7
|0

8
|0

9
|0

10
|0

11
|0

12
|0

13
|1

14
|1

15
|1

16
|0

17
|1

18
|1

19
|1

20∗

|0
21
|0

22
|1

23
|0

24
|0

25
|0

26
|0

27
|1

28
|1

29
|0

30
|0

31
|0

32
| .

Here ‘
j∗

| ’ denotes the position of the largest soliton (referring position) and ‘
jo

| ’ denotes that
of a 0-soliton. The position x

(1)
1 (t) can be chosen arbitrary, and we took x

(1)
1 (t) = 3 in

this example. Finally we translate the above state so that the position of the largest soliton
coincides with Xs+1(t) as
0
|1

1
|1

2
|0

3
|0

4
|0

5
|1

6
|1

7
|1

8
|0

9
|1

10
|1

11
|0

12
|0

13
|0

14
|0

15
|0

16
|0

17
|0

18
|1

19
|1

20
|1

21
|0

22
|1

23
|1

34
|1

25∗

|0
26
|0

27
|1

28
|0

29
|0

30
|0

31
|0

32
| .

This is the state at t = 10 000.
In this letter, we have solved the initial value problem in an elementary way. We also

remark that our method can be equally applied to extended PBBSs with carrier capacity �

as those treated in [12]. In these PBBSs, we have only to replace Lj → min[Lj , �] in
proposition 1 and apply the above procedures. Clarifying the relation between our methods
and previous work based on algebraic curves and representation theories, is one of the important
problems we want to address in the future.
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